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Exercise 1.1. Suppose f, g : E ! C are measurable functions on some measure space

(E, E , µ). Show that:

a) kfgk
Lr 6 kfk

Lp kgkLq where 1 6 p, q, r 6 1 satisfy p
�1 + q

�1 = r
�1

[You may wish to first establish the special case r = 1.]

b) kf + gk
Lp 6 kfk

Lp + kgk
Lp for 1 6 p 6 1.

Exercise 1.2. a) Suppose that µ(E) < 1. Show that if f 2 L
p(E, µ), then f 2 L

q(E, µ)
for any 1 6 q 6 p, with

kfk
Lq 6 µ(E)

p�q
qp kfk

Lp .

b) Suppose that f 2 L
p0(E, µ) \ L

p1(E, µ) with p0 < p1 6 1. For 0 6 ✓ 6 1, define p✓

by

1

p✓
=

1� ✓

p0
+

✓

p1
.

Show that f 2 L
p✓(E, µ) with

kfk
L
p✓ 6 kfk1�✓

Lp0 kfk✓
Lp1 .

c) Show that for p1 6= p2 we have L
p1(Rn) 6⇢ L

p2(Rn). For which p1, p2 do we have

L
p1
loc.

(Rn) ⇢ L
p2
loc.

(Rn)?

Exercise 1.3. Let RQ be the set of rectangles of the form (a1, b1]⇥ · · ·⇥ (an, bn] with

ai, bi 2 Q, and let SQ be the set of functions of the form

s(x) =
NX

k=1

(↵k + i�k)1Rk

for Rk 2 RQ and ↵k,�k 2 Q. For 1 6 p < 1 show that SQ is dense in L
p(Rn) and

deduce that L
p(Rn) is separable. Show that L

1(Rn) is not separable.

[Hint: for the last part exhibit an uncountable subset X ⇢ L
1(Rn) such that kf � gk

L1(Rn) >
1 for any f, g 2 X, f 6= g] .

Exercise 1.4. a) Suppose 1 6 p 6 1 and let q satisfy p
�1 + q

�1 = 1. Show that for a

measurable function f : Rn ! C:

kfk
Lp = sup

⇢Z

Rn
|f(x)g(x)| dx : g 2 L

q(Rn), kgk
Lq 6 1

�
.

Please send any corrections to c.m.warnick@maths.cam.ac.uk
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b) Now suppose p < 1 and assume F : Rn ⇥ Rn ! C is integrable. Set G(y) =R
Rn F (x, y)dx. Show that if kgk

Lq 6 1 then

Z

Rn
|G(y)g(y)| dy 6

Z

Rn

Z

Rn
|F (x, y)|p dy

� 1
p

dx.

Deduce Minkowski’s integral inequality

Z

Rn

����
Z

Rn
F (x, y)dx

����
p

dy

� 1
p

6
Z

Rn

Z

Rn
|F (x, y)|p dy

� 1
p

dx.

Exercise 1.5. Let I = (0, 1) and 1  p < 1. Exhibit a sequence (fj)1j=1 with fj 2 L
p(I)

such that fj ! 0 in L
p(I), but fj(x) does not converge for any x. Does such a sequence

exist if p = 1?

Exercise 1.6. Suppose 1 6 p < 1.

a) Suppose f 2 L
p(Rn). Show that

|{x : |f(x)| > �}| 6 kfkp
Lp

�p
.

This is known as Tchebychev’s inequality, the p = 1 case is Markov’s inequality.

b) We say that a measurable f : Rn ! C is in weak-L
p(Rn), written f 2 L

p,w(Rn) if

there exists a constant C such that

|{x : |f(x)| > �}| 6 C
p

�p
.

Show that L
p(Rn) ⇢ L

p,w(Rn), and that the inclusion is proper.

Exercise 1.7. Suppose that f 2 L
r(Rn) for some 1 6 r < 1. Show that kfk

L1 =
limp!1 kfk

Lp .

[Hint: you may find the estimates in Exercises 1.2 b), 1.6 a) useful.]

Exercise 1.8. a) Let B1, . . . , BN be a finite collection of open balls in Rn
. Show that

there exists a subcollection Bi1 , . . . , Bik of disjoint balls such that

N[

i=1

Bi ⇢
k[

j=1

(3Bij ),

where 3B is the ball with the same centre as B but three times the radius. Deduce

�����

N[

i=1

Bi

����� 6 3n
kX

j=1

��Bij

�� .
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b) (*) Suppose {Bj : j 2 J} is an arbitrary collection of balls in Rn
such that each ball

has radius at most R. Show that there exists a countable subcollection {Bj : j 2 J
0},

J
0 ⇢ J of disjoint balls such that

[

i2J
Bi ⇢

[

i2J 0

(5Bi).

These are Wiener and Vitali’s covering Lemmas, respectively.

Exercise 1.9. Suppose f : R ! C is integrable and let F (x) =
R
x

�1 f(t)dt. Show that

F is differentiable with F
0(x) = f(x) at each Lebesgue point x 2 R. Deduce that F is

differentiable almost everywhere.

Exercise 1.10. Suppose � 2 L
1(Rn) satisfies � > 0, supp � ⇢ B1(0), and

R
Rn � dx = 1.

Set �✏(x) = ✏
�n
�(✏�1

x). Show that if f 2 L
1(Rn), and x is a Lebesgue point of f ,

�✏ ? f(x) ! f(x), as ✏! 0.

Exercise 1.11. Let S = { n,k}n,k2Z be the Haar system, as defined in lectures.

a) Show that Z

R
 n1,k1(x) n2,k2(x)dx = �n1n2�k1k2 .

b) Show that 1I 2 Span S for any finite interval I, where the closure is understood with

respect to the L
2

norm.

c) Deduce that S is an orthonormal basis for L
2(R).

Exercise 1.12. (*) Suppose (E, E) is a measurable space, with finite measures µ, ⌫. Show

that ⌫ may be uniquely written as ⌫ = ⌫a + ⌫s, for measures ⌫a, ⌫s such that ⌫s ? µ and

⌫a ⌧ µ.

[Hint: Return to the proof of the Radon–Nikodym theorem, but drop the assumption that

⌫ ⌧ µ]


